A mutation in the Zn-finger of the GAL4 homolog LAC9 results in glucose repression of its target genes.
نویسندگان
چکیده
The transcriptional activator LAC9, a GAL4 homolog of Kluyveromyces lactis which mediates lactose and galactose-dependent activation of genes involved in the utilization of these sugars can also confer glucose repression to those genes. Here we report on the isolation and characterization of LAC9-2, an allele which encodes a glucose-sensitive activator in contrast to the one previously cloned. A single amino acid exchange of leu-104 to tryptophan is responsible for the glucose-insensitive phenotype. The mutation is located within the Zn-finger-like DNA binding domain which is highly conserved between LAC9 and GAL4. Glucose repression is also eliminated by duplication of the LAC9-2 allele. The data indicate that LAC9 is a limiting factor for beta-galactosidase gene expression under all growth conditions and that glucose reduces the activity of the activator.
منابع مشابه
The Transcription Factor LACS from Kh yverom yces Zactis-like GAL4 from Saccharom yces cerevisiae Forms a Zn(II)&yse Binuclear Cluster*
The DNA binding domain of the transcription factor LAC9 contains 6 cysteine residues with spacing in the primary peptide sequence identical to that found in the DNA binding domain of the GAL4 transcription factor. In GAL4, the CysX&ysX&ysX&ysX&ysX&ys motif has been shown to form a Zn(I&Cyss binuclear cluster (Pan, T. and Coleman, J. E. (1990) Proc. N&Z. Acud. Sci. U. S. A. 87, 2077-2081), repre...
متن کاملGenetic evidence for similar negative regulatory domains in the yeast transcription activators GAL4 and LAC9.
The GAL4 protein of Saccharomyces cerevisiae and the LAC9 protein of Kluyveromyces lactis are transcription activator proteins with similar structure and function. Greatest similarity occurs in the C region near the carboxy terminus, where 16 of 18 amino acids are identical. The function of the C region is unclear. Here we show that the structural similarity is reflected in functional similarit...
متن کاملRepression by SSN 6 - TUP 1 is directed by MIG 1 , a repressor / activator protein ( transcription / yeast / zinc - finger protein / glucose repression )
The SSN6-TUP1 protein complex represses transcription of diversely regulated genes in the yeast Saccharomyces cerevisiae. Here we present evidence that MIG1, a zinc-finger protein in the EGR1/Zif268 family, recruits SSN6-TUP1 to glucose-repressed promoters. DNA-bound LexA-MIG1 represses transcription of a target gene in glucose-grown cells, and repression requires SSN6 and TUP1. We also show th...
متن کاملThe Potential Mechanism of ZFX Involvement in Cell Growth
Background:The zinc-finger X linked (ZFX) gene encodes a transcription factor that acts as a regulator of self-renewal of stem cells. Due to the role of ZFX in cell growth, understanding ZFX protein-protein interactions helps to clarify its proper biological functions in signaling pathways. The aim of this study is to define ZFX protein-protein interactions and the role of ZFX in cell growth. ...
متن کاملBioinformatics Genome-Wide Characterization of the WRKY Gene Family in Sorghum bicolor
The WRKY gene family encodes a large group of transcription factors that regulate genes involved in plant response to biotic and abiotic stresses. Sorghum is a notable grain and forage crop in semi-arid regions because of its unusual tolerance against hot and dry environments. We identified a set of 85 WRKY genes in the S. bicolor genome and classified them into three groups (I–III). Among the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 18 4 شماره
صفحات -
تاریخ انتشار 1990